
CS 351 Fall 2010 - HW3 Solutions

1

1) Degree d= 1, therefore max. no. of records per node is 2. (Insert 16, 6, 4, 11, 10, 12, 14, 7, 9.)

CS 351 Fall 2010 - HW3 Solutions

2

2) Degree (d) is 1.

Number of nodes = 4

Minimum number of nodes can be obtained in a tree which has its every node %100 full (as much as
possible). So; if we insert keys with the sequence 8, 30, 40, 6, 61, 70, 50; we obtain the tree as the
following:

CS 351 Fall 2010 - HW3 Solutions

3

3) (6, 12, 4, 11, 10, 16, 14, 7, 9, 5, 15, 3, 1)

Note that data nodes are connected to each other (not shown in the following figure). After inserting
the first four records we have the following.

 insert 10, 16=>(10, 11, 12) 11 goes up

 insert 14 => (12, 14, 16) 14 goes up

 (6, 11, 14) 11 goes up

 insert 7 => (7, 10 ,11) 10 goes up

insert 9 => (7, 9, 10) 9 goes up

 (6, 9 ,10) 9 goes up

6

4 6 11 12

6 11

4 6 10 11 12 16

11

6 14

4 6 10 11 12 14 16

11

6 10 14

4 6 7 10 12 14 1611

9 11

6 14

4 6 7 9 12 14 1611

10

10

CS 351 Fall 2010 - HW3 Solutions

4

 insert 5, 15 => (4, 5, 6) 5 goes up

insert 3 => (3, 4, 5) 4 goes up

 (4, 5, 6) 5 goes up

 (5, 9, 11) 9 goes up

insert 1 => (1, 3, 4) 3 goes up

9 11

5 6 14

4 5 7 9 12 14 15 1611

10

106

9

5
11

4 6

3 4 5 6 7 9 10 11 12 14 15 16

10 14

9

5
11

3 4 6

1 3 4 6 7 9 10 11 12 14 15 16

10 14

5

CS 351 Fall 2010 - HW3 Solutions

5

4) Minimum:

We would have 300 / 10 = 30 data nodes. We need 30 pointers to point to these data blocks. Hence the

number of index nodes above the data nodes is Ceiling (30 / (2d+1)) = Ceiling (30 / 11) = 3

We also need to have a root node.

Thus the depth is 2 excluding the data level.

Maximum:

We would have 300 / 5 = 60 data nodes. We need 60 pointers to point to data blocks. Hence the

number of index nodes above the data nodes Floor (60 / (d+1)) = Floor (60 / 6) = 10

We also need to have a root node.

Thus the depth is 2 excluding the data level.

5) Minimum number of data nodes to be accessed is 2, since 100 of these records can be stored in

one data node and 2 of them can be stored in the adjacent data node. Maximum number of disk

access can be 3 since the records to be accessed can be at the most in 3 different data nodes.

6)

a- B+ tree is more efficient when we need to process a range query or sequential access by its nature.

B+ tree index structure is dynamic and changes according to the needs.

b- Index structure of a ISAM is static and therefore we may have overflow records.

c- B+ tree gives you to get the range queries in easy and faster way with the connections between data
nodes.

d- Sequential file provides a way to keep the data in less memory compared to B+tree since there is
no index structure. It is suitable for applications that require entire file access without paying attention
to ordering of records (e.g., for finding averages).

e- In B+ tree structure we can access records by following the links between the consecutive data
nodes. In B tree we need to use inorder traversal which requires more disk accesses.

CS 351 Fall 2010 - HW3 Solutions

6

7)

We have Leaf node size = 2400 bytes Available memory = 5 MB

R (record size) = 200 bytes average fo = 50

bk: no. of data buckets

5x10⁶ / 2400 = 2083 index blocks can be kept in the main memory

2083 = bk / (fo)² = bk / 50² => bk = 5,207,500

2400/200 = 12 Bkfr; n(number of records) = bk x 0.7 x 12

So; we can have approximately n = 43,743,000 records.

In this calculation Salzberg (p. 151) assumes that we have three layers above the parent of leaf level.

8) Using binary search.

No. of records Binary Search Pass No.
1,000,000 1
500,000 2
250,000 3
125,000 4
62,500 5
31,250 6
15,625 7
7812 8
3906 9
1953 10
976 11
488 12
244 13
122 14
61 15

After the 15th pass, we do not need to make any disk access since the record is now in the desired
bucket. So the time for fetching a record is as follows:

TF = 15 * 10 ms = 150 ms (a)

CS 351 Fall 2010 - HW3 Solutions

7

Number of records Pass no
10,000 1
5,000 2
2,500 3
1,250 4
625 5
312 6
156 7
78 8

In this part, we know that we search the record in a particular 10,000 records through the index
structure. Therefore, we start to apply binary search in these 10,000 records. After 8th pass, we do not
need to make any disk access since the record is now in the desired bucket. So the time for fetching a
record is as follows:

TF = 8 * 10 ms = 80 ms (b)

Some solutions are from Anıl Yaman and Eren Gölge

